Fitting a light curveΒΆ

This example shows how to fit the parameters of a SALT2 model to photometric light curve data.

First, we’ll load an example of some photometric data.

from __future__ import print_function

import sncosmo

data = sncosmo.load_example_data()

print(data)

Out:

time      band       flux         fluxerr      zp  zpsys
------------- ----- --------------- -------------- ---- -----
      55070.0 sdssg   0.36351153597 0.672843847541 25.0    ab
55072.0512821 sdssr -0.200801295864 0.672843847541 25.0    ab
55074.1025641 sdssi  0.307494232981 0.672843847541 25.0    ab
55076.1538462 sdssz   1.08776103656 0.672843847541 25.0    ab
55078.2051282 sdssg  -0.43667895645 0.672843847541 25.0    ab
55080.2564103 sdssr   1.09780966779 0.672843847541 25.0    ab
55082.3076923 sdssi    3.7562685627 0.672843847541 25.0    ab
55084.3589744 sdssz   5.34858894966 0.672843847541 25.0    ab
55086.4102564 sdssg   2.82614187269 0.672843847541 25.0    ab
55088.4615385 sdssr   7.56547045054 0.672843847541 25.0    ab
          ...   ...             ...            ...  ...   ...
55129.4871795 sdssr    2.6597485586 0.672843847541 25.0    ab
55131.5384615 sdssi   3.99520404021 0.672843847541 25.0    ab
55133.5897436 sdssz   5.73989458094 0.672843847541 25.0    ab
55135.6410256 sdssg  0.330702283107 0.672843847541 25.0    ab
55137.6923077 sdssr  0.565286726579 0.672843847541 25.0    ab
55139.7435897 sdssi   3.04318346795 0.672843847541 25.0    ab
55141.7948718 sdssz   5.62692686384 0.672843847541 25.0    ab
55143.8461538 sdssg -0.722654789013 0.672843847541 25.0    ab
55145.8974359 sdssr   1.12091764262 0.672843847541 25.0    ab
55147.9487179 sdssi    2.1246695264 0.672843847541 25.0    ab
      55150.0 sdssz    5.3482175645 0.672843847541 25.0    ab
Length = 40 rows

An important additional note: a table of photometric data has a band column and a zpsys column that use strings to identify the bandpass (e.g., 'sdssg') and zeropoint system ('ab') of each observation. If the bandpass and zeropoint systems in your data are not built-ins known to sncosmo, you must register the corresponding Bandpass or MagSystem to the right string identifier using the registry.

# create a model
model = sncosmo.Model(source='salt2')

# run the fit
result, fitted_model = sncosmo.fit_lc(
    data, model,
    ['z', 't0', 'x0', 'x1', 'c'],  # parameters of model to vary
    bounds={'z':(0.3, 0.7)})  # bounds on parameters (if any)

The first object returned is a dictionary-like object where the keys can be accessed as attributes in addition to the typical dictionary lookup like result['ncall']:

print("Number of chi^2 function calls:", result.ncall)
print("Number of degrees of freedom in fit:", result.ndof)
print("chi^2 value at minimum:", result.chisq)
print("model parameters:", result.param_names)
print("best-fit values:", result.parameters)
print("The result contains the following attributes:\n", result.keys())

Out:

Number of chi^2 function calls: 133
Number of degrees of freedom in fit: 35
chi^2 value at minimum: 33.8098823608
model parameters: ['z', 't0', 'x0', 'x1', 'c']
best-fit values: [  5.15154859e-01   5.51004778e+04   1.19625368e-05   4.67270999e-01
   1.93951997e-01]
The result contains the following attributes:
 ['errors', 'parameters', 'success', 'data_mask', 'ndof', 'covariance', 'vparam_names', 'chisq', 'nfit', 'param_names', 'message', 'ncall']

The second object returned is a shallow copy of the input model with the parameters set to the best fit values. The input model is unchanged.

sncosmo.plot_lc(data, model=fitted_model, errors=result.errors)
../_images/sphx_glr_plot_lc_fit_001.png

Suppose we already know the redshift of the supernova we’re trying to fit. We want to set the model’s redshift to the known value, and then make sure not to vary z in the fit.

model.set(z=0.5)  # set the model's redshift.
result, fitted_model = sncosmo.fit_lc(data, model,
                                      ['t0', 'x0', 'x1', 'c'])
sncosmo.plot_lc(data, model=fitted_model, errors=result.errors)
../_images/sphx_glr_plot_lc_fit_002.png

Total running time of the script: ( 0 minutes 1.960 seconds)

Generated by Sphinx-Gallery